generative-art-0.1.0.0
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Ord.Extended

Synopsis

Documentation

between :: Ord a => (a, a) -> a -> Bool Source #

Is the value between two other values?

newtype Min a Source #

Monoid to calculate the minimum.

Constructors

Min a 

Instances

Instances details
Monoid (Min Double) Source #

mempty = \(\infty\)

Instance details

Defined in Data.Ord.Extended

(Bounded a, Ord a) => Monoid (Min a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

Ord a => Semigroup (Min a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Show a => Show (Min a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

showsPrec :: Int -> Min a -> ShowS #

show :: Min a -> String #

showList :: [Min a] -> ShowS #

Eq a => Eq (Min a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

(==) :: Min a -> Min a -> Bool #

(/=) :: Min a -> Min a -> Bool #

Ord a => Ord (Min a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

compare :: Min a -> Min a -> Ordering #

(<) :: Min a -> Min a -> Bool #

(<=) :: Min a -> Min a -> Bool #

(>) :: Min a -> Min a -> Bool #

(>=) :: Min a -> Min a -> Bool #

max :: Min a -> Min a -> Min a #

min :: Min a -> Min a -> Min a #

newtype Max a Source #

Monoid to calculate the maximum.

Constructors

Max a 

Instances

Instances details
Monoid (Max Double) Source #

mempty = \(-\infty\)

Instance details

Defined in Data.Ord.Extended

(Bounded a, Ord a) => Monoid (Max a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Ord a => Semigroup (Max a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Show a => Show (Max a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

showsPrec :: Int -> Max a -> ShowS #

show :: Max a -> String #

showList :: [Max a] -> ShowS #

Eq a => Eq (Max a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

(==) :: Max a -> Max a -> Bool #

(/=) :: Max a -> Max a -> Bool #

Ord a => Ord (Max a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

compare :: Max a -> Max a -> Ordering #

(<) :: Max a -> Max a -> Bool #

(<=) :: Max a -> Max a -> Bool #

(>) :: Max a -> Max a -> Bool #

(>=) :: Max a -> Max a -> Bool #

max :: Max a -> Max a -> Max a #

min :: Max a -> Max a -> Max a #

data MinMax a Source #

Semigroup to calculate the minimum and maximum simultaneously.

Constructors

MinMax !a !a 

Instances

Instances details
Monoid (MinMax Double) Source #

mempty = \((\infty, -\infty)\)

Instance details

Defined in Data.Ord.Extended

(Bounded a, Ord a) => Monoid (MinMax a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

mempty :: MinMax a #

mappend :: MinMax a -> MinMax a -> MinMax a #

mconcat :: [MinMax a] -> MinMax a #

Ord a => Semigroup (MinMax a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

(<>) :: MinMax a -> MinMax a -> MinMax a #

sconcat :: NonEmpty (MinMax a) -> MinMax a #

stimes :: Integral b => b -> MinMax a -> MinMax a #

Show a => Show (MinMax a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

showsPrec :: Int -> MinMax a -> ShowS #

show :: MinMax a -> String #

showList :: [MinMax a] -> ShowS #

Eq a => Eq (MinMax a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

(==) :: MinMax a -> MinMax a -> Bool #

(/=) :: MinMax a -> MinMax a -> Bool #

Ord a => Ord (MinMax a) Source # 
Instance details

Defined in Data.Ord.Extended

Methods

compare :: MinMax a -> MinMax a -> Ordering #

(<) :: MinMax a -> MinMax a -> Bool #

(<=) :: MinMax a -> MinMax a -> Bool #

(>) :: MinMax a -> MinMax a -> Bool #

(>=) :: MinMax a -> MinMax a -> Bool #

max :: MinMax a -> MinMax a -> MinMax a #

min :: MinMax a -> MinMax a -> MinMax a #

module Data.Ord